A Note on Tensor Products of Polar
Spaces Over Finite Fields.

Bruce N. Cooperstein

Abstract

A symplectic or orthogonal space admitting a hyperbolic basis over a finite
field is tensored with its Galois conjugates to obtain a symplectic or orthogonal
space over a smaller field. A mapping between these spaces is defined which
takes absolute points to absolute points. It is shown that caps go to caps.
Combined with a result of Dye’s one obtains a simple proof of a result due to
Blokhuis and Moorehouse that ovoids do not exist on hyperbolic quadrics in
dimension ten over a field of characteristic two.

Let k = GF(q), q a prime power, and K = GF(¢™) for some positive integer
m. Let V =< z1,20 > & < 23,84 > &... 5 < xo,_1,T2, > be a vector space
over K. Let 7 be the automorphism of K given by a” = a? so that <7 > =T =
Gal(K/k). For each 0 € T let V7 be a vector space with basis 7,27, ..., z5,. Set
M=VeV V" ®...@V™" . This is a space of dimension (2n)™ over K. Let & =
{1,2,...,2n}™ and for I = (i1, i1,...,im) € S, set 17 = 25 @ x], ®xf32 ®.. .®x§:_1
Then B = {x;: I € 3}, is a basis for M.

We next define a semilinear action of 7 on M as follows: For I = (i1,1,...,0m) €
S set I = (im-1,%0,01,---,im—2) and then for a € K, I € {1,2,...,2n}" define
(ax;)™ = a"z;- and extend by additivity to all of M. Denote by M” the set of all
vectors of M fixed under this action. This is a vector space over k.

Proposition 1: As a vector space over k, dimM* = (2n)™.

Proof: Let Q1,,, ..., be the orbits of T in B. Then M7 is the direct sum of
the fixed points of 7in < ; >x forv=1,2,...,t. Let 2 = ; for some 7,1 <i <t

and let + = z; be in 2, assume that < 7! > is the stablizer of z; in T and set
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L=K<> Ifwe<Q >1 then there is an a € L such that w = ax +a’27 + ... +
o™ 'z™ " Since the stablizer of z in T is < 7% > it follows that card(€2) = m/I. On
the other hand, dimp(K) =l so that dimy(L) = m/l = card(2) = dimg(< Q >k).
We therefore have that dimy,(M") = card(B) = dimx(M).O

We now assume that V' is equipped with an alternate or symmetric bilinear
form ~ such that the set of vectors {z1,x2,...,22,} is a hyperbolic basis for V'
with respect to 7. More precisely, we let v: V' x V' — K be a bilinear form which
satisfies y(zgi—1,29) = 1 for i = 1,2,...,n and y(zs,2;) = 0 for all other pairs
xs,x, with s <t € {1,2,...,2n}. Note that y(z;, ;) = 0 for every i. Now for each
o € T define 77 to be a reflexive bilinear map of the same type as v such that
V(2] 2) = y(xi,x;) for all 4,5 € {1,2,...,2n}. We may then define a bilinear

form 4: M x M — K as follows: let I = (i1,42,...,%m) and J = (j1,72,...,Jm) € S,

define ¥(xr, ;) = [1}2, 771_1(3:;[—1, x;;_l). Under this definition, for each I € < there
is a unique J € & such that y(x;,z;) # 0, namely the J = (j1, j2,. .., jm) With
g1 =4+ 1if 4 is odd, and j; = 4; — 1 if 4; is even. We denote this J by I’. Note
that 7(zr,xp) = £1. Extend 7 to all of M by bilinearity. It then follows that for a

suitable ordering of the x;, B is a hyperbolic basis of M with respect to 7.

Now suppose that 7 is an alternate form so that v(u,v) = —v(v,u) for every
u,v € V. Then if m is even the form 7 is symmetric, while if m is odd, then %
is alternate. In the former case, we can define a quadratic form ) on M so that

Qz;) = 0, Az, zy) = Qxr + ) — Q(x1) — Q(x5). When ~ is symmetric, 7 is
again symmetric and if for each o € T, 7 is the quadratic form from V7 to K
such that Q7(X7" a;xy) = Y7 agj g5 so that Q7(27) = 0, and 7 (x;,2;) =
Q% (x; + xj) — Q7 (x;) — Q7(x;), then in a similar fashion we can define a quadratic
form @ M — K.

Lemma: 1. Let u,v € MT, then J(u,v) € k. II. Assume one of the following:
(a) 7 is symmetric and V is equipped with a quadratic form; or (b) ~ is alternate
and m is even. Let Q : M — K be the quadratic form defined as above. Then for
any v € M,@(v) € k.

Proof: I. M7 is the direct sum of the spaces <  >% taken over the orbits
of T in B. For an orbit Q of T"in B let Q' = {xp|x; € Q}. Now for any orbit A of
T in B other than €2, ) the spaces < A >k and < Q, ) >k are orthogonal with
respect to 4. By the additivity of 7 it suffices to consider the case that u € < Q >L.,
ve < Q> Let x = z; be in Q and assume that the stablizer of x7 is < >
and set L = K<"> the fixed field of 7' in K. Then also < 7! > is the stabilizer
of #' = xp in T. Note that y(z;, xp) = (=, 2 ye), for 0 < s < 1 —1. Now a

typical element of < Q >L isu =ar+a 2™ +... + o™ 27" where « is an element

of L and similarly, if v is an element of < €' >% then there is a 3 € L such that
w' = Bz’ + () +...+87 ()" Then 5(u,v) = af+a"f7+...4a” 'p7 " =
Trrr(af) which is an element of k.

I1. From the above it suffices to assume that v €< Q >L + < ' >% and show
that Q(v) € k. There are two cases to consider: (i) Q # ; and (ii) Q = .

In the case of (i) if v = w +w' with w €< Q >% and w' €< ' >} then Q(v) =
Q(w+w') = 5(w,w') € k by L. Thus, we may assume (ii). Then for each 2 € Q also
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2 € Q and therefore [ is even. Let Iy = [/2. Then o' = 27°. Now let w e< Q >% |
As remarked in I there is an o € L such that w = az +a” +...+a” 27 . Then
Qw) = aa™ +a7a™" 4+ ... +a™ o™ . But this is clearly fixed by 7, whence
is an element of k.[]

In light of the lemma we can assume that the bilinear form 47 = 5| M* x MT and
the quadratic form Q7 = @]M T are defined over k. Now for a vector v = 2", qyx; €
V,and o € T define v = 37, aZx? an element of V7. This is a semilinear map
from V to V7. For v € V set v7 = v®@v™®...®@v"" . This is a vector in M7. Our
main results now follow:

Proposition 2: Let the hypothesis be as in the second part of the previous
lemma. Then Q*(v") = Ni/r(Q(v)).

Proof: Let v = Y2, oy, so that vT =

(Z a;x;) @ (Z alz])®...® (Z a;m_lx;m_l)
i=1 i=1 i=1

_ T rm-l1
~ Y apal ...l

where the sum is taken over all I = (i1, 19, ...,15,) € S. It then follows that
m—1 m
QT(/UT> = Z &il&jl &zz&;Q T Oé’z—m Oé;ml
where J = (j1,J2,--.,Jm) = I’ and the sum is taken over the pairs {I,I'} from .

This is equal to

m—1

> (i g, ) (i) (@, 05,,)

m

H(O&lOéQ + asay ...+ Oégn_loégn)Tl = NK/k(Q(U))D
=0

In out next proposition we establish a similar formula for 47 (v, w”).
Proposition 3: For v,w € V, 77 (v, wh) = Ng/p(v(v, w)).
Proof: Let v = Y2 o;x; and w = 37, B;z;. Then

2n 2n omn
V=)@ (a0 (a2l
i=1 i=1 i—1

and
2n 2n 2n _— _—
w'=Q B QD) @... Q6 2] ).
i=1 i=1 i=1

Then A7 (0T, wT) = S(v, i) (iyBi,)" - - - (i, 8;,)""  where, as in the previous
proposition J = (j1,j1,--.,jm) = I’ and the sum is taken over all pairs {I, I'}. This
is equal to

m—1

H (11 +aefa+ ...+ 042715271)7—1_1
1=0
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which is, indeed, equal to Ng/x(v(v,w)) as claimed. O

Corollary: If v,w € V and (v, w) # 0, then T (v, wT) # 0.

Definition: Let V' be equipped with an alternate form . A set of points O of
PG(V) (one spaces of V) is a cap if for all distinct U, W € O,~(U, W) # 0, that is,
U, W are non-orthogonal. If V' is an orthogonal space with a quadratic form ) and
associated symmetric form v then a cap is a set O of singular points (one spaces
U of V such that Q(U) = 0) which are pairwise non-orthogonal with respect to 7.
The bound on the cardinality of a cap in a hyperbolic orthogonal space V' (i.e. an
orthogonal space which has a hyperbolic basis) is ¢"~! + 1 (cf [K,T]). A cap in a
hyperbolic orthogonal space which realizes this bound is called an ovoid. When
n = 3 (dimension of V' = 6), via the Klein correspondence, an ovoid is nothing
more than an affine translation plane (see [MS]) of dimensional at most two over
its kernal. Ovoids are much rarer when n = 4 but a number of families have been
constructed (see [CKW, K, M1, M2]). It is conjectured that ovoids do not exist for
n > 5. This has been proved in the case the field K has characteristic 2, 3, or 5
[BM]. From what we have shown, together with a result from [D] we can obtain a
simple proof of the non-existence of ovoids on hyperbolic quadrics in PG(2n—1,2™)
for n > 5.

Theorem[BM]: Let n > 5,¢ = 2. Then (V, @) does not contain an ovoid.

Proof: It suffices to prove that (V, Q) does not contain an ovoid when n = 5
(cf [T]). Let C be an ovoid in V. Let D = {< vT > | < v > € C}. Note D is
well-defined, for if < v > € C' and a € K then (av)’ = Ngp@am)/ar@e) (a)v = o'.
By Proposition 2, D consists of singular points, and by Proposition 3, D is a cap of
M™. By Theorem 1 (ii) of [D], card(D) < dimgr@)(M*)+1 = (10)"+ 1, since M7
is a hyperbolic space. On the other hand, card(D) = card(C) = (2")*+1 = 16" +1
which is greater than (10)™ + 1, a contradiction. O

We can also make use of the results in [D] to prove an ovoid O in a hyperbolic
space V' of eight dimensions over GF'(2™) must span the entire space:

Theorem|BM,T]: Let (V, Q) be an orthogonal space with hyperbolic basis 1, . . .,
xg defined over the field K' = GF(2™). Let O be an ovoid of (V, @), then < O >g=V.

Proof: Let W =< O >k . The cap O = {< 0T > | <v > € O} in M7 has
cardinality (2™)* 4+ 1 = 8" 4+ 1 = dimgp@2)(MT). Since (MT,QT) is a hyperbolic
space over GF'(2) it follows from Theorem 1 (iv) [D] that < O7 >gp() spans M7
and therefore < O >gp(em) spans M. However, if W were a proper subspace of
V then < OT >k would be contained in the subspace W @ W7 Q.. W™!
which is a proper subspace of M.[]
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