
A Characterization of the Grassmanian
of points and lines for C3,2-buildings

Serge Lehman∗

Abstract

We give necessary and sufficient conditions for a line space to be the
shadow space of a C3,2-building.

1 Introduction

Consider a Coxeter diagram of spherical type An, Cn, Dn, . . . ,F4 with a natural
labelling of its nodes as in Bourbaki [1]. The following examples will be considered

in the present paper:

An

u u u u u u
1 2 3 n-2 n-1 n

and Cn

u u u u u u
1 2 3 n-2 n-1 n
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Each of these diagrams corresponds to a class of buildings (Tits [16]). If the node
labelled i is singled out, we get a diagram called An,i or Cn,i respectively. Geometri-

cally, this amounts to the construction of a line space (the definition is given below)
with one type (namely i) of vertices of a building ∆ of type Xn, where Xn is a
Coxeter diagram of spherical type. The point-set P of this line space is the set of
all i-elements; a subset l of P is a line if and only if there exists a flag F of cotype

i such that l is the set of all i-elements incident with F . We call this line space an
Xn,i-building space and we denote it by S(∆, i). We can make a similar construction
from a geometry.

The An,1-building spaces correspond exactly to projective spaces (Tits [16]) and
the classical work of Veblen and Young [17] characterizes the latter in terms of

points and lines. Buekenhout-Shult’s characterization of polar spaces [4] gives an
analogous result for Cn,1-building spaces. It seems reasonable to try to find a sim-
ilar characterization for all building spaces An,i, Cn,i, ..., F4,i. Many authors (e.g.

Cameron [5], Cooperstein [10], Cohen [6] [7], Buekenhout [3], Cohen-Cooperstein
[9], Hanssens[12] [13], Hanssens-Thas [14]) have worked on this problem. For a
recent survey, see Cohen [8].

The first open case (in alphabetical order) is Cn,n−1; it is a difficult one in view
of earlier approaches. In order to deal with this case, it seems appropriate to study

C3,2 first. This is the purpose of the present paper. The general case Cn,n−1 is
discussed in Lehman [15].

A line space Γ is a pair (P, L) where P is a set whose elements are called points
and L is a set of subsets of P called lines such that each line contains at least two
points. Two distinct points p and q are called collinear if there exists a line which

contains these two points; we denote this fact by p ∼ q and the fact that p and q
are not collinear by p 6∼ q. A line space Γ is called a partial linear space if any two
distinct points are contained in at most one line. A subspace Γ′ of a partial linear
space Γ is a pair (P ′, L′) such that P ′ ⊂ P , L′ ⊂ L and two points of P ′ are collinear

in Γ if and only if they are collinear in Γ′. If Γ is a partial linear space and if p ∼ q
then we denote by pq the unique line containing these two points. A path between
two points p0 and pk is a sequence of points p0, p1, p2, . . . , pk such that pi ∼ pi+1 for
each i = 0, ..., k− 1. A circuit is a path such that p0 and pk are equal. A line space

Γ is called connected if there exists a path between any two points.

Let Γ be a connected partial linear space. By definition, a plane (resp. a quad)
of Γ is a subspace of Γ which is a projective plane (resp. a maximal (with respect
to inclusion) generalized quadrangle).
We are interested in the following properties:

CO1. Any two distinct planes intersect in at most one point.
CO2. Any two distinct quads intersect in at most one point.
CO3. Every line is contained in at least one plane.

CO4. Every line is contained in at least one quad.
CO5. The intersection of a plane and a quad is a line or the empty set .

A connected partial linear space with these 5 properties will be called a cuboc-
tahedral space. The term cuboctahedral has been chosen on purpose. Indeed, the
prototype of a building is one of its apartments, namely a Coxeter complex. For
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C3,1 this is an octahedron. For C3,3 it is a cube. For C3,2 the prototype is a cuboc-
tahedron (see for instance Coxeter [11]).

We will prove that these 5 properties characterize buildings of type C3,2; more
precisely, we will prove the following results.

Theorem 1. Let ∆ be a building of type C3. Then the building space S(∆, 2) is a
cuboctahedral space.

Theorem 2. If S is a cuboctahedral space, then there is a building ∆ of type C3

such that S is isomorphic to S(∆, 2).

2 Lemmas

In a partial linear space, let us define a quadrangle as a set of four points {p1, p2, p3,
p4} such that p1 ∼ p2 ∼ p3 ∼ p4 ∼ p1 6∼ p3 and p2 6∼ p4. We also define a triangle

as a set of three points any two of which are collinear.

2.1 The quadrangle lemma

In a cuboctahedral space, every quadrangle is contained in exactly one quad.
Proof. Let p1, p2, p3, p4 be the four points of a quadrangle. The line p2p3 (resp.
p4p1) is contained in a plane P1 (resp. P2). The two planes P1 and P2 are dis-

tinct, otherwise p1 ∼ p3 or p2 ∼ p4, contradicting the fact that {p1, p2, p3, p4} is a
quadrangle. The line p1p2 (resp. p3p4) is contained in a quad Q1 (resp. Q2). The
intersection of P1 and Q1 (resp. P2 and Q1, P1 and Q2, P2 and Q2) is a line D1

(resp. D2, D3, D4). As the two lines D1 and D3 (resp. D2 and D4) are contained

in a projective plane, they meet in a point q1 (resp. q2). The points q1 and q2 are
distinct, otherwise there would be a triangle (namely {p1, p2, q1}) in the generalized
quadrangle Q1. The quads Q1 and Q2 are equal, otherwise their intersection would
contain at least two points (q1 and q2). The quadrangle {p1, p2, p3, p4} is contained

in the quad Q = Q1 = Q2. The unicity of this quad follows from property CO2.

2.2 Remark

We can prove a similar property for triangles (the triangle lemma) : In a cubocta-
hedral space, every triangle is contained in exactly one plane.

2.3 Lemma

In a cuboctahedral space, every line is contained in exactly one plane and exactly
one quad.
Proof.If a line is contained in two distinct planes (resp. quads), this contradicts

property CO1 (resp. CO2). The existence of such a plane (resp. such a quad)
follows from property CO3 (resp. CO4).
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3 Cuboctahedral geometry

We first recall some definitions and notations about geometries.

Let V and I be two sets, let t be a function from V to I called the type function
and let * be a reflexive and symmetric relation on V called incidence. The quadruple
(V, I, t, ∗) is an incidence system . A flag is a subset F of V such that any two
elements of F are incident. A chamber is a flag C such that t(C) = I . An incidence

system (V, I, t, ∗) is called a geometry if and only if the following two conditions
are satisfied:
a) Two distinct elements of V of the same type are never incident.
b) Every comaximal flag is contained in at least two chambers.

The rank of a geometry is the cardinality of I . Let Γ = (V, I, t, ∗) be a geometry.

Let a and b be two elements of V . A path of length n between a and b is a sequence
(p1, p2, . . . , pn−1, pn)of elements of V such that p1 = a, pn = b and, for every i < n, pi
is incident with pi+1. The residue ΓF of a flag F is the geometry (V ′, I ′, t′, ∗′) where

V ′ is the set of all elements of V \F which are incident to every element of F ,
I ′ = I\t(F ), t′ = t|V ′ and ∗′ = ∗|V ′. A geometry is called connected if for any two
elements of V , there is a path between them. A geometry is residually connected if
every residue of rank at least 2 is connected. The following result is well-known [2]:

Let Γ = (V, I, t, ∗) be a residually connected geometry. Let i and j be two distinct
elements of I. Let a and b be two elements of V. Then there exists an integer n such
that there exists a path of length n between a and b with t({p2, . . . , pn−1}) ∈ {i, j}.
If t(a) and t(b) ∈ {i, j}, we call such a path an (i-j)-path of length n.

3.1 Definition

Given a cuboctahedral space Γ, we define an incidence system of rank 3, denoted

by G(Γ), whose types are called point, plane and quad, as follows: the elements of
G(Γ) of type point (resp. plane, quad) are the points (resp. planes, quads) of Γ.
The incidence is the natural one: for the points the incidence is defined by inclusion

and a plane is incident with a quad if and only if their intersection is a line. We
call such an incidence system a cuboctahedral geometry . We shall prove that it is
indeed a geometry (see proposition 3.3).
Remark. We often identify a plane (resp. a quad) of a cuboctahedral geometry

with the set of all points contained in it.

3.2 Lemma

1) Each flag of type plane-quad has at least two points incident with it.
2) Each flag of type point-quad has at least two planes incident with it.
3) Each flag of type point-plane has at least two quads incident with it.

Proof. 1) If a plane is incident with a quad, then by definition of the incidence they
contain a line and, so at least two points.

2) Given a point of a quad, there are at least two distinct lines of this quad containing
this point. Property CO3 shows that each of these two lines is included in a plane,
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and by CO5, these planes are distinct.
3) Given a point of a plane, there are at least two distinct lines of this plane con-

taining this point. Property CO4 shows that each of these two lines is included in
a quad and, by CO5, these quads are distinct.

3.3 Proposition

A cuboctahedral geometry is a geometry.
Proof. Two distinct elements of the same type are never incident by definition of
the incidence. Moreover lemma 3.2 implies that every comaximal flag is contained

in at least two chambers.

3.4 Lemma

1) The residue of a point in a cuboctahedral geometry is a generalized digon.

2) The residue of a plane (resp. quad) in a cuboctahedral geometry is a projective
plane (resp. a generalized quadrangle).
3) A cuboctahedral geometry is residually connected.
Proof. 1) By CO5, a quad and a plane both incident with a point p contain a

common line and so are incident.
2) By lemma 2.2, there is an obvious bijection between the set of quads incident
with a plane P (resp. between the set of planes incident with a quad Q) and the
set of lines of P (resp. Q).

3) The geometry G(Γ) is connected because Γ is connected. Moreover, the residue of
a point (resp. a quad, a plane) is a generalized digon (resp. a generalized quadrangle,
a projective plane) and so is connected. Therefore G(Γ) is residually connected.

3.5 Corollary

A cuboctahedral geometry is a geometry of type C3.
Proof. This follows immediately from 1) and 2) in lemma 3.4.

4 Proof of theorem 1

We will often identify the lines of S(∆, 2) and the flags of type {1, 3} of ∆. We will
denote the 1-, 2- and 3-elements of ∆ by symbols such that p,D and π.

First part: The building space S(∆, 2) is a partial linear space.

Proof. Since ∆ is a building and since a building is firm, each line of S(∆, 2) contains
at least two points. Thus S(∆, 2) is a line space. Moreover S(∆, 2) is a partial linear
space because two distinct 2-elements of ∆ are incident with at most one 1-element
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of ∆ and with at most one 3-element of ∆.

Second part A subspace γ = (P ′, L′) of S(∆, 2) is a projective plane if and only if
there is a 3-element of ∆ such that P ′ is the set of 2-elements of ∆ incident with it.

Proof. If there is a 3-element of ∆ such that P ′ is the set of 2-elements of ∆ incident
with it, then γ is obviously a projective plane because the residue of a 3-element in
a building of type C3 is a projective plane.

Let γ = (P ′, L′) be a subspace of S(∆, 2) which is a projective plane. We claim
that there is a 3-element of ∆ incident with every point of P ′. Indeed, let D and

D′ be two distinct points of γ. Since γ is a projective plane, these two points are
collinear. Let pπ be the line of γ containing these two points. We know that D
and D′ are both incident with π (which is a 3-element of ∆). We shall prove that
all points of γ are incident with π. Let D” be a point of γ different from D and

D′. If D” is contained in pπ, then D” is obviously incident with π. Hence we may
assume that D” is not contained in pπ. Since γ is a projective plane, D ∼ D” and
D′ ∼ D”. Let p′π′ (resp. p”π”) be the line containing D and D” (resp D′ and D”).
We can easily see that the 1-elements p, p′ and p” are all incident with each of the

3-elements π, π′ and π” (because the residue of a 2-element is a generalized digon).
Note that (D, pπ,D′, p”π”, D”, p′π′) is a circuit of length 6 in γ. Let Π denote

the set of 1-elements of ∆ which are incident with each of the elements π, π′ and π”.
There is an element of ∆ such that the set Π is the set of all 1-elements incident with
it (we can prove this property in S(∆, 1) which is a polar space; there the property
amounts to the fact that the intersection of three planes is either a point, a line or

a plane). Obviously Π cannot be a unique 1-element, otherwise p = p′ = p” and
(D, pπ,D′, pπ”, D”, pπ′) would be a circuit of length 6 completely contained in the
residue of p which is a generalized quadrangle. Using S(∆, 1), we can also prove

that there is no 2-element of ∆ such that Π is the set of 1-elements incident with
it. Indeed, in that case, at most two of the 3-elements π, π′ and π” are equal. This
means that in S(∆, 1) two of the three subspaces π ∩π′, π ∩π′′ and π′ ∩π′′ are lines
and are equal to π∩π′∩π′′. Moreover if π∩π′ (resp. π∩π′′,π′∩π′′ ) is a line, it must

be D (resp. D′, D”) and then two of those three 2-elements are equal, contradicting
the fact that we have assumed them to be distinct. Then there is a 3-element of
∆ such that Π is the set of all 1-elements incident with it. This 3-element must
be equal to π = π′ = π” (indeed, in S(∆, 1), if the intersection of three planes is a

plane then the three planes are equal) and then D” is incident with π.
Since no projective plane contains a proper subspace isomorphic to a projective

plane and since the set of all 2-elements incident with a 3-element π of ∆ is itself a
projective plane, we know that for each projective plane γ in S(∆, 2) there exists a
3-element π of ∆ such that γ is the set of all 2-elements incident with π.

Third part: A subspace γ = (P ′, L′) of S(∆, 2) is a maximal generalized quadrangle

if and only if there is a 1-element of ∆ such that P ′ is the set of 2-elements of ∆
incident with it.
Proof. We shall reduce the proof to the proof of the following three statements:

A. If there is a 1-element of ∆ such that P ′ is the set of 2-elements of ∆ incident
with it, then γ is a generalized quadrangle.



A Characterization of the Grassmanian of points and lines for C3,2-buildings 93

B. If γ is a generalized quadrangle, then for each pair of points of P ′ there is a
1-element of ∆ which is incident with these two points.

C. If γ is a generalized quadrangle, then there is a 1-element of ∆ which is

incident with every point of P ′.
Indeed, if γ is a generalized quadrangle, then by statement C there exists a 1-element
p of ∆ such that every point of γ is a 2-element incident with p. Moreover, if p is
a 1-element of ∆, the set of all 2-elements incident with p is itself a generalized

quadrangle, and so γ can be a maximal generalized quadrangle only if there is a 1-
element p of ∆ such that P ′ is the set of all 2-elements incident with p. The converse
is also true. Indeed, if p is a 1-element of ∆ and if P ′ is the set of all 2-elements

incident with p, then γ is a generalized quadrangle. Moreover, for each subspace
γ′ of S(∆, 2) which is a generalized quadrangle, there is a 1-element p′ such that
every point of γ′ is a 2-element incident with p′. Thus γ is a maximal generalized
quadrangle. Let us now prove statements A, B and C.

A. If there is a 1-element of ∆ such that P ′ is the set of 2-elements of ∆ incident
with it, then γ is clearly a generalized quadrangle because the residue of a 1-element
of ∆ is a generalized quadrangle.
B. Let γ = (P ′, L′) be a subspace of S(∆, 2) which is a generalized quadrangle. We

claim that for any two points of P ′ there exists a 1-element of ∆ such that the two
chosen points are two 2-elements of ∆ both incident with it. Indeed, let D1 and
D2 be two points of P ′. If these two points are collinear, then there is a flag pπ of
type {1, 3} such that D1 and D2 are incident with pπ and so with p. If D1 6∼ D2

then there is a point-line circuit of length 8 in γ including D1 and D2 (because γ
is a generalized quadrangle). Let (D1, p1π1, D3, p3π3, D2, p2π2, D4, p4π4) be such a
circuit. We get the following relations:

- The 2-element D1 of ∆ is incident with the 3-elements π1 and π4 of ∆.
- The 1-element p2 of ∆ is incident with the 2-elements D4 and D2 of ∆ which are
incident with the 3-elements π4 resp. π3 of ∆. Then, since the residue of a 2-element
is a generalized digon, p2 is incident with π3 and π4. It is trivial that π1 and π4

are different, otherwise, since the residue of a 3-element is a projective plane, there
would be a 1-element of ∆ (say p) such that D3 and D4 are both incident with p.
As the line pπ1 of S(∆, 2) contains each of the points D3 and D4 of γ, it is a line
of γ. The contradiction follows from the fact that (D1, p1π1, D3, pπ1, D4, p4π1) is a

point-line circuit of length 6 in a generalized quadrangle. We also know that p2 is
incident with π1; otherwise, we can prove that in S(∆, 1) the point p2 is collinear
with all points of the plane π1, which is impossible in a polar space of rank 3. Indeed,
let p 6= p1 be a point of S(∆, 1) contained in the plane π1 of S(∆, 1) and let D be

a line of S(∆, 1) on p which does not contain D1 ∩D3 and which is included in π1.
Let p′ (resp. p”) be the point of S(∆, 1) common to D and D1 (resp. to D and D3).
Since p2 and p′ (resp. p2 and p”) are included in the plane π4 (resp. π3) of S(∆, 1),

they are collinear and as p2 is collinear with two points of D, it is collinear with all
points of D (because S(∆, 1) is a polar space) and so with p.

Finally, we see that p2 is incident with both D2 and D1; indeed, in S(∆, 1), the
line D1 is the intersection of the planes π1 and π4; and since p2 is contained in π1

and π4, p2 is contained in D1.
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C. Let D and D′ be two distinct collinear points of γ. Since D and D′ are collinear,
there is a flag of type {1, 3} (denoted by pπ) such that D and D′ are two 2-elements

of ∆ incident with pπ. Let D” be a point of γ distinct from D and D′. We shall
prove that p is incident with D”. If the points D, D′ and D” of γ are collinear,
then the point D” of γ is contained in the line pπ of γ, and so D” is incident with
p. Therefore we may assume that the points D, D′ and D” of γ are not collinear.

By B, we know that there exists a 1-element p′ (resp. p”) of ∆ such that D and D”
(resp. D′ and D”) are both incident with p′ (resp. p”). The 2-element D” of ∆ is
not incident with the 3-element π of ∆, otherwise, since each of the line p′π and p”π

of S(∆, 2) has two of its points in P ′, it would be a line of γ and there would exist
a point-line circuit of length 6 (D, pπ,D′, p”π,D”, p′π) in a generalized quadrangle.
Moreover, the 1-elements p′ and p” of ∆ are equal, otherwise, in S(∆, 1), the line
D” would be the only one containing these two points and the points p′ and p”

of S(∆, 1) are contained respectively in the line D and D′ of S(∆, 1) themselves
contained in the plane π of S(∆, 1). The contradiction follows from the fact that
the 2-element D” of ∆ is included in the 3-element π of ∆. Moreover p is equal to
p′ because in S(∆, 1) they belong to D and D′ and the intersection of two distinct

lines cannot contain more than one point. Finally, the last equality proves that the
2-element D” of ∆ is incident with the 1-element p of ∆.

Fourth part: The building space S(∆, 2) is a cuboctahedral space.

We already know that S(∆, 2) is a partial linear space and that the quads (resp. the
planes) can be identified with the 1-(resp. 3-)elements of ∆.We only need to check
the five properties CO1, . . . , CO5.

In S(∆, 1) property CO1 becomes: ”The intersection of any two distinct planes
contains at most one line”. This is straightforward because S(∆, 1) is a polar space
of rank three.
In S(∆, 1) property CO2 becomes: ”There is at most one line on two distinct

points”. This is straightforward because S(∆, 1) is a line space.
In ∆ properties CO3 and CO4 become: ”For every flag of type {1, 3}, the set of
2-elements incident with this flag is contained in the set of all 2-elements incident
with at least one 3-element (for CO3) or one 1-element (for CO4)”.

In ∆ property CO5 becomes: ”Given one 1-element p and one 3-element π, either p
is incident with π and then the intersection of the set of 2-elements incident with p
and the set of 2-elements incident with π is the set of 2-elements incident with the
flag pπ, or p is not incident with π; then there is no 2-element incident with both p

and π (because the residue of a 2-element in ∆ is a generalized digon)”.

5 Proof of theorem 2

We will denote the points, quads and planes of G(Γ) by symbols such that p, Q and

P .

First part. Let Γ be a cuboctahedral space. Let p be a point of G(Γ) and Q be
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a quad of G(Γ) non incident with p. Then there is a point-quad path of length 4
between p and Q.

Proof. We reduce the proof of this part to the proof of the following statement: If
(p,Q′, p′, Q”, p”, Q) is a point-quad path between p and Q, then there is a point-
quad path of length 4 between p and Q.
Indeed, by lemma 3.4, Γ is residually connected, and so there is an integer n > 1

and a point-quad path of length 2n between p and Q. We can prove this part using
the statement (n− 2) times.

To prove the statement, we distinguish three cases:
(1) p′ and p” are collinear.

The line p′p” is contained in a plane P0. The intersection of P0 and Q (resp. Q’) is
a line D1 (resp. D2). Since the lines D1 and D2 are both contained in the projective
plane P0, they meet in a point q. As the point q is included in D1 (resp. D2), it is
incident to Q (resp. Q′).

The path (p,Q′, q, Q) is a point-quad path of length 4 between p and Q.
(2) p and p′ (resp. p′ and p”) are collinear (resp. non-collinear).
The line pp′ is contained in a plane P0. The intersection ofP0 and Q” is a line D1.
Since Q” is a generalized quadrangle, there is a point-line path of length 4 between

D1 and p” in Q”, namely (D1, q, D2, p”). The line D2 is contained in a plane P1.
The intersection of P1 and Q is a line D3. The line on p and q is contained in the
quad Q1 whose intersection with P1 is a line D4. Since the lines D3 and D4 are both
contained in the projective plane P1, they meet in a point q′.

The path (p,Q1, q
′, Q) is a point-quad path of length 4 between p and Q.

(3) p and p′ (resp. p′ and p”) are not collinear.
Since Q′ is a generalized quadrangle, there is a point-line path of length 5 between p

and p′ in Q′, namely (p,D1, p1, D2, p
′). The line D2 is contained in a plane P0 whose

intersection with Q” is a line D3. Since Q” is a generalized quadrangle, there exists
a point-line path of length 4 between D3 and p” in Q”, namely (D3, p2, D4, p”). The
line D4 is contained in a plane P1 whose intersection with Q is a line D5. The line

on p1 and p2 is contained in a quad Q1. The intersection of Q1 and P1 is a line
D6. As the lines D5 and D6 are both contained in the projective plane P1, they
meet in a point q. The path (p,Q′, p1, Q1, q, Q) is a path satisfying the hypotheses
of the second case. The second case shows that there is a point-quad path of length

4 between p and Q.

Second part. Let Γ be a cuboctahedral space. Let p be a point of G(Γ) and Q be a
quad of G(Γ) non incident with p. If there exist two distinct (point-quad)-paths of
length 4 between p and Q, namely (p,Q′, p′, Q) and (p,Q”, p”, Q), then every quad

incident with p is incident with a point q incident with Q.
Proof. We distinguish two cases.
(1) Either the points p and p′ or the points p and p” are collinear.
Without loss of generality, we may assume that p and p′ are collinear. Let Q0 be

a quad distinct from Q′ and incident with p. The line on p and p′ is contained in
a plane P0 whose intersection with Q (resp. Q0) is a line D1 (resp. D2). Since the
lines D1 and D2 are both included in the projective plane P0, they meet in a point
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q. Then Q0 is incident with q, which is itself incident with Q.
(2) Neither the points p and p′, nor the points p and p” are collinear.

Since Q′ is a generalized quadrangle, there is a point-line path of length 5 between p
and p′ in Q′, namely (p,D1, p1, D2, p

′). The line D1 is contained in a plane P0 whose
intersection with Q” is a line D3. Since Q” is a generalized quadrangle, there is a
point-line path of length 4 between D3 and p” in Q”, namely (D3, p2, D4, p”).

If p′ and p” are collinear, then {p′, p”, p2, p1} is a quadrangle and so, by the
quadrangle lemma, these four points are contained in a unique quad which is Q.

Since (p,Q”, p2, Q) is a point-quad path of length 4 where p and p2 are collinear,
the hypotheses of the first case are satisfied, and so every quad incident with p is
incident with a point q which is itself incident with Q.

If p′ and p” are not collinear, then the line D4 is contained in a plane P1 whose
intersection with Q is a line D5. Since Q is a generalized quadrangle, there is a

point-line path of length 4 between D5 and p′ in Q, namely (D5, p3, D6, p). The
quadrangle {p3, p

′, p1, p2} is contained in a unique quad which is Q. As (p,Q′, p1, Q)
is a point-quad path of length 4 with p and p1 collinear, the hypotheses of the first
case are satisfied, and so every quad incident with p is incident with a point q which

is itself incident with Q.

Third part. Conclusion.
Proof. The first two parts show that S(G(Γ),quad) is a polar space. Moreover,
corollary 3.5 shows that G(Γ) is a geometry of rank three. Therefore the geometry
G(Γ) is a building of type C3 such that S(G(Γ),point) is equal to Γ.
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