ON A GENERALIZED DOUBLE DIFFERENCE SEQUENCE SPACES DEFINED BY A $\chi-$ SEQUENCE OF MODULUS FUNCTIONS

N. Subramanian

ABSTRACT. The idea of single difference sequence spaces was introduced by Kizmaz and this concept was generalized by various authors. In this paper, we define the sequence spaces $\chi^2(\Delta_u^\gamma, M_{mn}, p, s)$ and $\Lambda^2(\Delta_u^\gamma, M_{mn}, p, s)$, where $M = (M_{mn})$ is a sequence of modulus functions, and examine some inclusion relations and properties of these spaces.

2000 Mathematics Subject Classification: 40A05,40C05,40D05.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich[4]. Later on, they were investigated by Hardy[8], Moricz[12], Moricz and Rhoades[13], Basarir and Solankan[2], Tripathy[20], Colak and Turkmenoglu[6], Turkmenoglu[22], and many others.

Let us define the following sets of double sequences:

$$\mathcal{M}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : sup_{m,n \in N} |x_{mn}|^{t_{mn}} < \infty \right\},$$

$$\mathcal{C}_{p}(t) := \left\{ (x_{mn}) \in w^{2} : p - lim_{m,n \to \infty} |x_{mn} - l|^{t_{mn}} = 1 \text{ for some } l \in \mathbb{C} \right\},$$

$$\mathcal{C}_{0p}(t) := \left\{ (x_{mn}) \in w^{2} : p - lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \right\},$$

$$\mathcal{L}_{u}\left(t\right) := \left\{ \left(x_{mn}\right) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left|x_{mn}\right|^{t_{mn}} < \infty \right\},$$

$$\mathcal{C}_{bp}\left(t\right) := \mathcal{C}_{p}\left(t\right) \bigcap \mathcal{M}_{u}\left(t\right) \text{ and } \mathcal{C}_{0bp}\left(t\right) = \mathcal{C}_{0p}\left(t\right) \bigcap \mathcal{M}_{u}\left(t\right);$$

where $t = (t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p-\lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case $t_{mn}=1$ for all $m, n \in \mathbb{N}$; $\mathcal{M}_{u}(t)$, $\mathcal{C}_{p}(t)$, $\mathcal{C}_{0p}(t)$, $\mathcal{L}_{u}(t)$, $\mathcal{C}_{bp}(t)$ and $\mathcal{C}_{0bp}(t)$ reduce to the sets $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp} , respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak [27,28] have proved that $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{p}(t)$, $\mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and gave the α -, β -, γ - duals of the spaces $\mathcal{M}_u(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zelter [29] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [30] have recently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [31] and Mursaleen and Edely [32] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences $x = (x_{ik})$ into one whose core is a subset of the M-core of x. More recently, Altay and Basar [33] have defined the spaces \mathcal{BS} , $\mathcal{BS}(t)$, \mathcal{CS}_p , \mathcal{CS}_{bp} , \mathcal{CS}_r and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces $\mathcal{M}_u, \mathcal{M}_u(t), \mathcal{C}_p, \mathcal{C}_{bp}, \mathcal{C}_r$ and \mathcal{L}_u , respectively, and also examined some properties of those sequence spaces and determined the α - duals of the spaces $\mathcal{BS}, \mathcal{BV}, \mathcal{CS}_{bp}$ and the $\beta(\vartheta)$ - duals of the spaces \mathfrak{CS}_{bp} and \mathfrak{CS}_r of double series. Quite recently Basar and Sever [34] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Quite recently Subramanian and Misra [35] have studied the space $\chi_M^2(p,q,u)$ of double sequences and gave some inclusion relations.

We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and 0 , we have

$$(a+b)^p \le a^p + b^p \tag{1}$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m,n \in \mathbb{N})$ (see[1]).

A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{mn} |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double entire sequence if $|x_{mn}|^{1/m+n} \to 0$ as $m, n \to \infty$. The

double entire sequences will be denoted by Γ^2 . A sequence $x=(x_{mn})$ is called double gai sequence if $((m+n)! |x_{mn}|)^{1/m+n} \to 0$ as $m, n \to \infty$. The double gai sequences will be denoted by χ^2 . Let $\phi = \{all\ finite\ sequences\}$.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \Im_{ij}$ for all $m, n \in \mathbb{N}$; where \Im_{ij} denotes the double sequence whose only non zero term is a $\frac{1}{(i+j)!}$ in the $(i,j)^{th}$ place for each $i,j \in \mathbb{N}$.

An FK-space (or a metric space) X is said to have AK property if (\Im_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \rightarrow (x_{mn})$ $(m, n \in \mathbb{N})$ are also continuous.

Orlicz[16] used the idea of Orlicz function to construct the space (L^M) . Lindenstrauss and Tzafriri [10] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space ℓ_M contains a subspace isomorphic to ℓ_p ($1 \le p < \infty$). subsequently, different classes of sequence spaces were defined by Parashar and Choudhary [17], Mursaleen et al. [14], Bektas and Altin [3], Tripathy et al. [21], Rao and Subramanian [18], and many others. The Orlicz sequence spaces are the special cases of Orlicz spaces studied in [9].

Recalling [16] and [9], an Orlicz function is a function $M:[0,\infty)\to[0,\infty)$ which is continuous, non-decreasing, and convex with M(0)=0, M(x)>0, for x>0 and $M(x)\to\infty$ as $x\to\infty$. If convexity of Orlicz function M is replaced by subadditivity of M, then this function is called modulus function, defined by Nakano [15] and further discussed by Ruckle [19] and Maddox [11], and many others.

An Orlicz function M is said to satisfy the Δ_2 - condition for all values of u if there exists a constant K > 0 such that $M(2u) \leq KM(u)(u \geq 0)$. The Δ_2 -condition is equivalent to $M(\ell u) \leq K\ell M(u)$, for all values of u and for $\ell > 1$.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to construct Orlicz sequence space

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, for some \rho > 0 \right\},$$

The space ℓ_M with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\},$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p (1 \le p < \infty)$, the spaces ℓ_M coincide with the classical sequence space ℓ_p . If X is a sequence space, we give the following definitions:

(i) X' = the continuous dual of X;

(ii)
$$X^{\alpha} = \{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty, for each x \in X \};$$

(iii)
$$X^{\beta} = \{a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn} x_{mn} \text{ is convegent, for each } x \in X\};$$

(iv)
$$X^{\gamma} = \left\{ a = (a_{mn}) : sup_{mn} \ge 1 \left| \sum_{m,n=1}^{M,N} a_{mn} x_{mn} \right| < \infty, for each x \in X \right\};$$

(v)
$$let X bean FK - space \supset \phi$$
; $then X^f = \{ f(\Im_{mn}) : f \in X' \}$;

(vi)
$$X^{\delta} = \left\{ a = (a_{mn}) : \sup_{mn} |a_{mn}x_{mn}|^{1/m+n} < \infty, \text{ for each } x \in X \right\};$$

 $X^{\alpha}.X^{\beta}, X^{\gamma}$ are called $\alpha - (orK\"{o}the - Toeplitz)$ dual of $X, \beta - (orgeneralized - K\"{o}the - Toeplitz)$ dual of $X, \gamma - dual$ of $X, \delta - dual$ of X respectively. X^{α} is defined by Gupta and Kamptan [24]. It is clear that $x^{\alpha} \subset X^{\beta}$ and $X^{\alpha} \subset X^{\gamma}$, but $X^{\alpha} \subset X^{\gamma}$ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [36] as follows

$$Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$$

for $Z = c, c_0$ and ℓ_{∞} , where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$. Here w, c, c_0 and ℓ_{∞} denote the classes of all, convergent, null and bounded scalar valued single sequences respectively. The above spaces are Banach spaces normed by

$$||x|| = |x_1| + \sup_{k \ge 1} |\Delta x_k|$$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z(\Delta) = \{x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z\}$$

where $Z = \Lambda^2, \Gamma^2$ and χ^2 respectively. $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1}$ for all $m, n \in \mathbb{N}$

Let $r \in \mathbb{N}$ be fixed, then

$$Z(\Delta^r) = \{(x_{mn}) : (\Delta^r x_{mn}) \in Z\} \text{ for } Z = \chi^2, \Gamma^2 \text{ and } \Lambda^2$$

where
$$\Delta^r x_{mn} = \Delta^{r-1} x_{mn} - \Delta^{r-1} x_{m,n+1} - \Delta^{r-1} x_{m+1,n} + \Delta^{r-1} x_{m+1,n+1}$$
.

Now we introduced a generalized difference double operator as follows:

Let $r, \gamma \in \mathbb{N}$ be fixed, then

$$Z\left(\Delta_{\gamma}^{r}\right) = \left\{ (x_{mn}) : \left(\Delta_{\gamma}^{r} x_{mn}\right) \in Z \right\} for Z = \chi^{2}, \Gamma^{2} and \Lambda^{2}$$

where $\Delta_{\gamma}^{r}x_{mn} = \Delta_{\gamma}^{r-1}x_{mn} - \Delta_{\gamma}^{r-1}x_{m,n+1} - \Delta_{\gamma}^{r-1}x_{m+1,n} + \Delta_{\gamma}^{r-1}x_{m+1,n+1}$ and $\Delta_{\gamma}^{0}x_{mn} = x_{mn}$ for all $m, n \in \mathbb{N}$.

The notion of a modulus function was introduced by Nakano [15]. We recall that a modulus f is a function from $[0, \infty) \to [0, \infty)$, such that

- (1) f(x) = 0 if and only if x = 0
- (2) $f(x+y) \le f(x) + f(y)$, for all $x \ge 0, y \ge 0$,
- (3) f is increasing,
- (4) f is continuous from the right at o. Since $|f(x) f(y)| \le f(|x y|)$, it follows from condition (iv) that f is continuous on $[0, \infty)$.

It is immediate from (ii) and (iv) that f is continuous on $[0, \infty)$. Also from codition (ii), we have $f(nx) \leq nf(x)$ for all $n \in \mathbb{N}$ and $n^{-1}f(x) \leq f(xn^{-1})$, for all $n \in \mathbb{N}$.

Remark: If f is a modulus function, then the composition $f^s = f \cdot f \cdots f$ (stimes) is also a modulus function, where s is a positive integer.

Let $p = (p_{mn})$ be a sequence of positive real numbers. We have the following well known inequality, which will be used throughout this paper:

$$|a_{mn} + b_{mn}|^{p_{mn}} \le D\left(|a_{mn}|^{p_{mn}} + |b_{mn}|^{p_{mn}}\right) \tag{2}$$

where a_{mn} and b_{mn} are complex numbers, $D = max \{1, 2^{H-1}\}$ and $H = sup_{mn}p_{mn} < \infty$.

2. Definitions and Notations:

A paranorm on a linear topological space X is a function $g: X \to R$ which satisfies the following axioms: For any $x, y, x_0 \in X$ and $\lambda, \lambda_0 \in \mathbb{C}$, the set of complex numbers,

(i)
$$g(\theta) = 0$$
, where $\theta = \begin{pmatrix} 0, & 0, & \dots 0 \\ 0, & 0, & \dots 0 \\ \vdots & & & \\ 0, & 0, & \dots 0 \end{pmatrix}$, the zero sequence,

- (ii) g(x) = g(-x)
- (iii) $g(x+y) \le g(x) + g(y) (subadditivity)$, and
- (iv) the scalar multiplication is continuous, that is $\lambda \to \lambda_0, x \to x_0$ imply $\lambda x \to \lambda_0 x_0$; in other rowrds, $|\lambda - \lambda_0| \to 0$, $g(x - x_0) \to 0$.

A paranormed space is a linear space X with a paranorm g and is written (X,g), (See [47], p.92).

Any function g which satisfies all the conditions (i)-(iv) together with the condition.

(v) g(x) = 0 if and only if $x = \theta$, is called a total paranorm on X, and the pair (X, g) is called a total paranormed space, (See [47], p.92).

Let U be the set of all sequences $u = (u_{mn})$ such that $u_{mn} \neq 0 \, (m, n = 1, 2, 3, \cdots)$.

In this paper, we generalize the following sequence spaces:

Let $M = (M_{mn})$ be a sequence of modulus function and γ be a positive integer, and using the notation $\Delta_u^{\gamma} x_{mn}$ for $u_{mn} \Delta_{x_{mn}}^{\gamma}$, we define

$$\chi^{2}\left(\Delta_{u}^{\gamma}, M_{mn}, s\right) = \begin{cases} x \in w^{2} : \lim_{m, n \to \infty} (mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_{u}^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right] = 0, for some \ \rho > 0, s \ge 0, \end{cases}$$
and
$$\Lambda^{2}\left(\Delta_{u}^{\gamma}, M_{mn}, s\right) = \begin{cases} x \in w^{2} : \sup_{mn} (mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_{u}^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right] < \infty, for some \ \rho > 0, s \ge 0, \end{cases}$$
where $\Delta_{u}^{\gamma} x_{mn} = \left(\Delta_{u}^{\gamma-1} x_{mn} - \Delta_{u}^{\gamma-1} x_{mn+1} - \Delta_{u}^{\gamma} x_{m+1n} + \Delta_{u}^{\gamma} x_{m+1n+1} \right), \Delta_{u}^{0} x_{mn} = \left(u_{mn} x_{mn} \right), \Delta_{u} x_{mn} = \left(u_{mn} x_{mn} - u_{mn+1} x_{mn+1} - u_{m+1n} x_{m+1n} + u_{m+1n+1} x_{m+1n+1} \right).$

3. Main Results

We prove the following theorems:

Theorem 3.1 $\Lambda^2(\Delta_u^{\gamma}, M_{mn}, s)$ is a Banach space with the metric

$$d\left(x,y\right)=\inf\left\{\rho>0:\sup_{mn}\left(mn\right)^{-s}M_{mn}\left(\frac{\left|\Delta_{u}^{\gamma}x_{mn}-\Delta_{u}^{\gamma}y_{mn}\right|^{1/m+n}}{\rho}\right)\leq1\right\}$$
Proof: Let (x^{i}) be any Cauchy sequence in $\Lambda^{2}\left(\Delta_{u}^{\gamma},M_{mn},s\right)$ where $x^{i}=\left(x_{mn}^{i}\right)=\begin{pmatrix}x_{11}^{i},&x_{12}^{i},&...x_{1n}^{i}\\x_{21}^{i},&x_{22}^{i},&...x_{2n}^{i}\end{pmatrix}\in\Lambda^{2}\left(\Delta_{u}^{\gamma},M_{mn},s\right), for\ each\ i\in\mathbb{N}.$

$$\vdots$$

$$\vdots$$

$$x_{21}^{i},&x_{22}^{i},&...x_{2n}^{i}\end{pmatrix}$$
Let $r,x_{0}>0$ be fixed. Then for each $\frac{\epsilon}{rx_{0}}>0$ there exists a positive integer L such

that $(x^i - y^i) - (x_{\Delta_n^{\gamma}}^j - y_{\Delta_n^{\gamma}}^j) < \frac{\epsilon}{rx_0}$, for all $i, j \geq L$. Using the definition of metric,

$$sup_{mn} (mn)^{-s} \left[M_{mn} \left(\frac{\left| \left(\Delta_u^{\gamma} x_{mn}^i - \Delta_u^{\gamma} y_{mn}^i \right) - \left(\Delta_u^{\gamma} x_{mn}^j - \Delta_u^{\gamma} y_{mn}^j \right) \right|^{1/m+n}}{(x^i - y^i) - \left(x_{\Delta_u^{\gamma}}^j - y_{\Delta_u^{\gamma}}^j \right)} \right) \right] \leq 1, for all m, n \geq 1$$

0, and for alli, $\bar{i} > L$

Therefore one can find that there exists r > 0 with $(mn)^{-s} M_{mn} \left(\frac{rx_0}{2}\right) \ge 1$, such

$$(mn)^{-s} \left[M_{mn} \left(\frac{\left| \left(\Delta_u^{\gamma} x_{mn}^i - \Delta_u^{\gamma} y_{mn}^i \right) - \left(\Delta_u^{\gamma} x_{mn}^j - \Delta_u^{\gamma} y_{mn}^j \right) \right|^{1/m+n}}{(x^i - y^i) - \left(x_{\Delta_u^{\gamma}}^j - y_{\Delta_u^{\gamma}}^j \right)} \right) \right] \leq (mn)^{-s} M_{mn} \left(\frac{rx_0}{2} \right).$$

This implies that $\left| \left(\Delta_u^{\gamma} x_{mn}^i - \Delta_u^{\gamma} y_{mn}^i \right) - \left(\Delta_u^{\gamma} x_{mn}^j - \Delta_u^{\gamma} y_{mn}^j \right) \right|^{1/m+n} \le \frac{rx_0}{2} \frac{\epsilon}{rx_0} = \frac{\epsilon}{2}$. Since $u_{mn} \ne 0$ for all m, n, we get that

$$\left| \left(\Delta_u^{\gamma} x_{mn}^i - \Delta_u^{\gamma} y_{mn}^i \right) - \left(\Delta_u^{\gamma} x_{mn}^j - \Delta_u^{\gamma} y_{mn}^j \right) \right|^{1/m+n} \leq \frac{\epsilon}{2}, \ for \ all \ i, j \geq L$$

 $\left|\left(\Delta_u^{\gamma}x_{mn}^i-\Delta_u^{\gamma}y_{mn}^i\right)-\left(\Delta_u^{\gamma}x_{mn}^j-\Delta_u^{\gamma}y_{mn}^j\right)\right|^{1/m+n}\leq \frac{\epsilon}{2},\ for\ all\ i,j\geq L.$ Hence $\left(\Delta_u^{\gamma}x_{mn}^i-\Delta_u^{\gamma}y_{mn}^i\right)$ is a Cauchy sequence in \mathbb{R} . Therefore for each ϵ $(0<\epsilon<1)$ there exists a positive integer L such that

$$\left|\left(\Delta_u^{\gamma} x_{mn}^i - \Delta_u^{\gamma} y_{mn}^i\right) - \left(\Delta_u^{\gamma} x_{mn}^j - \Delta_u^{\gamma} y_{mn}^j\right)\right|^{1/m+n} \le \epsilon, for all i \ge L$$
. Now, using the continuty of M_{mn} for each mn , we get that

there exists a positive integer
$$L$$
 such that
$$\left| \left(\Delta_u^{\gamma} x_{mn}^i - \Delta_u^{\gamma} y_{mn}^i \right) - \left(\Delta_u^{\gamma} x_{mn}^j - \Delta_u^{\gamma} y_{mn}^j \right) \right|^{1/m+n} \leq \epsilon, for \, all \, i \geq L. \text{ Now, using the continuty of } M_{mn} \text{ for each } mn, \text{ we get that}$$

$$sup_{mn \geq L} (mn)^{-s} \left[M_{mn} \left(\frac{\left| \left(\Delta_u^{\gamma} x_{mn}^i - \Delta_u^{\gamma} y_{mn}^i \right) - \lim_{j \to \infty} \left(\Delta_u^{\gamma} x_{mn}^j - \Delta_u^{\gamma} y_{mn}^j \right) \right|^{1/m+n}}{\rho} \right) \right] \leq 1. \text{ Thus}$$

$$sup_{mn \geq L} (mn)^{-s} \left[M_{mn} \left(\frac{\left| \left(\Delta_u^{\gamma} x_{mn}^i - \Delta_u^{\gamma} y_{mn}^i \right) - \left(\Delta_u^{\gamma} x_{mn} - \Delta_u^{\gamma} y_{mn} \right) \right|^{1/m+n}}{\rho} \right) \right] \leq 1. \text{ Taking infine}$$
figure of such of such that

fimum of such $\rho's$ we have

$$\inf \left\{ \rho > 0 : \sup_{mn \ge L} (mn)^{-s} \left[M_{mn} \left(\frac{\left| \left(\Delta_u^{\gamma} x_{mn}^i - \Delta_u^{\gamma} y_{mn}^i \right) - \left(\Delta_u^{\gamma} x_{mn} - \Delta_u^{\gamma} y_{mn} \right) \right|^{1/m+n}}{\rho} \right) \right] \le 1 \right\}$$

 $\leq \epsilon$, for all $i \geq L$ and $j \to \infty$. Since $(x^i) \in \Lambda^2(\Delta_u^{\gamma}, M_{mn}, s)$, and M_{mn} is an modulus function for each m, n and therefore continuous, we get that $x \in \Lambda^2(\Delta_u^{\gamma}, M_{mn}, s)$. This completes the proof.

Theorem 3.2 Let (M_{mn}) be a sequence of modulus function such that M_{mn} satisfies the Δ_2 – condition for each mn. Then (i) $\Lambda^2\left(\Delta_u^{\gamma},s\right)\subset\Lambda^2\left(\Delta_u^{\gamma},M_{mn},s\right)$, (ii) $\chi^2(\Delta_u^{\gamma}, s) \subset \chi^2(\Delta_u^{\gamma}, M_{mn}, s)$.

Proof: (i) Let
$$x \in \Lambda^2(\Delta_u^{\gamma}, s)$$
, the $|\Delta_u^{\gamma} x_{mn}|^{1/m+n} \leq L$, for all m, n . Therefore $(mn)^{-s} \left[M_{mn} \left(\frac{|\Delta_u^{\gamma} x_{mn}|^{1/m+n}}{\rho} \right) \right] \leq (mn)^{-s} \left[M_{mn} \left(\frac{L}{\rho} \right) \right] \leq (mn)^{-s} KHM_{mn}(L)$, for

each
$$mn$$
, by the Δ^2 – condition. Hence $\sup_{mn} (mn)^{-s} \left[M_{mn} \left(\frac{\left| \Delta_u^{\gamma} x_{mn} \right|^{1/m+n}}{\rho} \right) \right] < \infty$.

That is $\Lambda^2(\Delta_u^{\gamma}, s) \subset \Lambda^2(\Delta_u^{\gamma}, M_{mn}, s)$.

(ii) Let $x \in \chi^2(\Delta_u^{\gamma}, s)$, then $((m+n)! |\Delta_u^{\gamma} x_{mn}|)^{1/m+n} \to 0$ as $m, n \to \infty$. Therefore

$$(mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right] \leq (mn)^{-s} \, Kh M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right),$$
 for each m, n by the Δ_2 - condition. Hence
$$(mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right] \to 0 \text{ as } m, n \to \infty.$$
 That is $\chi^2 \left(\Delta_u^{\gamma}, s \right) \subset \chi^2 \left(\Delta_u^{\gamma}, M_{mn}, s \right).$ This completes the proof. Theorem 3.3 Let (M_{mn}) be a sequence of modulus functions. Then
$$(\mathrm{i}) \Lambda^2 \left(\Delta_u^0, M_{mn}, s \right) \subset \Lambda^2 \left(\Delta_u^{\gamma}, M_{mn}, s \right),$$
 (ii) $\chi^2 \left(\Delta_u^0, M_{mn}, s \right) \subset \chi^2 \left(\Delta_u^{\gamma}, M_{mn}, s \right).$ Proof: It is trivial, so we omit it.

4. Paranormed Double Sequence Spaces

Let $p = (p_{mn})$ be a sequence of positive real numbers, $M = (M_{mn})$ be a sequence of modulus function and γ be a positive integer. We define

modulus function and
$$\gamma$$
 be a positive integer. We define $\chi^2\left(\Delta_u^\gamma, M_{mn}, p, s\right) = \left\{x \in w^2 : \lim_{m,n \to \infty} (mn)^{-s} \left[M_{mn}\left(\frac{\left((m+n)!|\Delta_u^\gamma x_{mn}|\right)^{1/m+n}}{\rho}\right)\right]^{p_{mn}} = 0, for \ some \ \rho > 0, s \ge 0, \right\}$ and $\Lambda^2\left(\Delta_u^\gamma, M_{mn}, p, s\right) = \left\{x \in w^2 : \sup_{mn} (mn)^{-s} \left[M_{mn}\left(\frac{\left((m+n)!|\Delta_u^\gamma x_{mn}|\right)^{1/m+n}}{\rho}\right)\right]^{p_{mn}} < \infty, for \ some \ \rho > 0, s \ge 0, \right\}$ where $\Delta_u^\gamma x_{mn} = \left(\Delta_u^{\gamma-1} x_{mn} - \Delta_u^{\gamma-1} x_{mn+1} - \Delta_u^{\gamma_1} x_{m+1n} + \Delta_u^{\gamma_1} x_{m+1n+1}\right), \Delta_u^0 x_{mn} = \left(u_{mn} x_{mn}\right), \Delta_u x_{mn} = \left(u_{mn} x_{mn} - u_{mn+1} x_{mn+1} - u_{m+1n} x_{m+1n} + u_{m+1n+1} x_{m+1n+1}\right).$ If $(M_{mn}) = M$ for all $m, n, s = 0$ and $\gamma = 1$, then these spaces reduce to $\chi^2\left(\Delta_u^\gamma, M_{mn}, p\right) = \left\{x \in w^2 : \lim_{m,n \to \infty} \left[M_{mn}\left(\frac{\left((m+n)!|\Delta_u x_{mn}|\right)^{1/m+n}}{\rho}\right)\right]^{p_{mn}} = 0, for \ some \ \rho > 0\right\}$
$$\Lambda^2\left(\Delta_u^\gamma, M_{mn}, p\right) = \left\{x \in w^2 : \sup_{mn} \left[M_{mn}\left(\frac{\left((m+n)!|\Delta_u x_{mn}|\right)^{1/m+n}}{\rho}\right)\right]^{p_{mn}} < \infty, for \ some \ \rho > 0\right\}$$
 These spaces are paranormed spaces with
$$G_u^\gamma(x) = \inf_{mn} \left\{\rho^{p_m/H} > 0 : \sup_{mn \ge 1} \left(mn\right)^{-s} \left[M_{mn}\left(\frac{|\Delta_u^\gamma x_{mn}|^{1/m+n}}{\rho}\right)\right]^{p_{mn}/H} \le 1\right\}, \text{ where } H = \max\left(1, \sup_{mn \ge 1} \left(\Delta_u^\gamma, M_{mn}, p, s\right) \text{ is a paranormed space with } G_u^\gamma(x) = \inf_{mn \ge 1} \left\{\rho^{p_m/H} > 0 : \sup_{mn \ge 1} \left(mn\right)^{-s} \left[M_{mn}\left(\frac{|\Delta_u^\gamma x_{mn}|^{1/m+n}}{\rho}\right)\right]^{p_{mn}/H} \le 1\right\} \text{ if and only if } h = \inf_{mn \ge 1} \rho, \text{ where } H = \max\left(1, \sup_{mn \ge 1} \left(1, \sup$$

(ii) $\Lambda^2(\Delta_u^{\gamma}, M_{mn}, p, s)$ is a complete paranormed linear metric space if the condition (i) is satisfied.

Proof: (i) Sufficiency: Let h > 0. It is trivial that $g(\theta) = 0$ and $G_u^{\gamma}(-x) =$ $G_u^{\gamma}(x)$. The inequality $G_u^{\gamma}(x+y) \leq G_u^{\gamma}(x) + G_u^{\gamma}(y)$ follows from the inequality (2), since $p_{mn}/H \leq 1$ for all positive integers m, n. We also may write $G_u^{\gamma}(\lambda x) \leq 1$ $max\left(\left|\lambda\right|,\left|\lambda\right|^{h/H}\right)G_{u}^{\gamma}\left(x\right)$, since $\left|\lambda\right|^{p_{mn}} \leq max\left(\left|\lambda\right|^{h},\left|\lambda\right|^{H}\right)$ for all positive integers m, n and for any $\lambda \in \mathbb{C}$, the set of complex numbers. Using this inequality, it can be proved that $\lambda x \to \theta$, when x is fixed and $\lambda \to 0$, or $\lambda \to 0$ and $x \to \theta$, or λ is fixed and $x \to \theta$.

Necessity: Let $\Lambda^2(\Delta_u^{\gamma}, M_{mn}, p, s)$ be a paranormed space with the paranormed

$$G_u^{\gamma}(x) = \inf \left\{ \rho^{p_m/H} > 0 : \sup_{mn \ge 1} (mn)^{-s} \left[M_{mn} \left(\frac{\left| \Delta_u^{\gamma} x_{mn} \right|^{1/m+n}}{\rho} \right) \right]^{p_{mn}/H} \le 1 \right\}, \text{ and}$$

suppose that h=0. Since $|\lambda|^{p_m/H} \leq |\lambda|^{h/H}=1$ for all positive integers m,n and $\lambda \in \mathbb{C}$ such that $0 < |\lambda| \le 1$, we have

$$\lambda \in \mathbb{C}$$
 such that $0 < |\lambda| \le 1$, we have $\inf \left\{ \sup_{mn \ge 1} (mn)^{-s} \left[M_{mn} \left(\frac{|\lambda|^{pmn/H}}{\rho} \right) \right] \le 1 \right\} = 1$. Hence it follows that $G_u^{\gamma}(\lambda x) = \inf \left\{ \sup_{mn \ge 1} (mn)^{-s} \left[M_{mn} \left(\frac{|\lambda|^{pmn/H}}{\rho} \right) \right] \le 1 \right\} = 1$ for $x = (\alpha) \in \Lambda^2(\Delta_u^{\gamma}, M_{mn}, p, s)$ is a paranormed space with $G_u^{\gamma}(x)$.

for
$$x = (\alpha) \in \Lambda^2(\Lambda^{\gamma}, M_{mn}, n, s)$$
 is a paranormed space with $G_{\gamma}^{\gamma}(x)$

(ii) The proof is clear.

Theorem 4.2 Let $0 < p_{mn} \le q_{mn} < \infty$ for each mn. Then $\chi^2(\Delta_u^{\gamma}, M_{mn}, p, s) \subseteq$ $\chi^2 \left(\Delta_u^{\gamma}, M_{mn}, q, s \right)$

Proof: Let
$$x \in \chi^2\left(\Delta_u^{\gamma}, M_{mn}, p, s\right)$$
. Then there exists some $\rho > 0$ such that $\lim_{m,n\to\infty} (mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right]^{p_{mn}} = 0$ This implies that $(mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right]^{p_{mn}} \le 1$ for sufficiently large m, n , since M_{mn} is now decreasing for each m and m and m and m are decreasing for each m and m are decreasing for each m and m are decreasing for each m and m are m are m are m and m are m and m are m and m are m and m are m are m and m are m are m and m are m and m are m are m and m are m

$$(mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right]^{p_{mn}} \le 1 \text{ for sufficiently large } m, n, \text{ since } M_{mn}$$

is non-decreasing for each
$$m, n$$
. Hence
$$\lim_{m,n\to\infty} (mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right]^{q_{mn}} \leq \lim_{m,n\to\infty} (mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right]^{p_{mn}} = 0 \text{ that is, } x \in \chi^2 \left(\Delta_u^{\gamma}, M_{mn}, q, s \right).$$

This completes the proof

Theorem 4.3 (i) $1 \leq infp_{mn} \leq p_{mn} \leq 1$. Then $\chi^2(\Delta_u^{\gamma}, M_{mn}, p, s) \subseteq \chi^2(\Delta_u^{\gamma}, M_{mn}, s)$ (ii) Let $1 \leq p_{mn} \leq supp_{mn} < \infty$. Then $\chi^2(\Delta_u^{\gamma}, M_{mn}, s) \subseteq \chi^2(\Delta_u^{\gamma}, M_{mn}, p, s)$.

Proof: (i) Let
$$x \in \chi^2(\Delta_u^{\gamma}, M_{mn}, p, s)$$
.

$$\lim_{m,n\to\infty} (mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! |\Delta_u^{\gamma} x_{mn}| \right)^{1/m+n}}{\rho} \right) \right]^{p_{mn}} = 0.$$

$$\lim_{m,n\to\infty} (mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right] \leq \lim_{m,n\to\infty} (mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right]^{p_{mn}} = 0, \text{ that is } \chi^2 \left(\Delta_u^{\gamma}, M_{mn}, s \right).$$

(ii) Let $1 \leq p_{mn}$ for each m, n, and $supp_{mn} < \infty$. Let $x \in \chi^2(\Delta_u^{\gamma}, M_{mn}, s)$, then for each ϵ (0 < ϵ < 1), there exists a positive integer L such that

each
$$\epsilon$$
 ($0 < \epsilon < 1$), there exists a positive integer L such that $(mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^n x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right] \le \epsilon$, for all $m, n \ge L$. Since $1 \le p_{mn} \le supp_{mn} < \infty$, we have

$$\lim_{m,n\to\infty} (mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right]^{p_{mn}} \leq \lim_{m,n\to\infty} (mn)^{-s} \left[M_{mn} \left(\frac{\left((m+n)! \left| \Delta_u^{\gamma} x_{mn} \right| \right)^{1/m+n}}{\rho} \right) \right] \leq \epsilon < 1.$$

Hence $x \in x \in \chi^2(\Delta_u^{\gamma}, M_{mn}, p, s)$. This completes the proof.

Theorem 4.3 Let (p_{mn}) be double analytic and (M_{mn}) be a sequence of Orlicz functions. Then (i) $\Lambda^2(\Delta_u^0, M_{mn}, p, s) \subset \Lambda^2(\Delta_u^\gamma, M_{mn}, p, s)$, (ii) $\chi^2(\Delta_u^0, M_{mn}, p, s) \subset$ $\chi^2 \left(\Delta_u^{\gamma}, M_{mn}, p, s \right)$.

Proof: Let $supp_{mn} = H$. If a_{mn} and b_{mn} are complex numbers, then we have $|a_{mn} + b_{mn}|^{p_{mn}} \le D(|a_{mn}|^{p_{mn}} + |b_{mn}|^{p_{mn}})$ where a_{mn} and b_{mn} are complex numbers, $D = max\{1, 2^{H-1}\}$ and $H = sup_{mn}p_{mn} < \infty$. Since M_{mn} is non decreasing and convex for each m, n, the results follows from the above inequality. This completes the proof.

References

- [1] T. Apostol, Mathematical Analysis, Addison-wesley, London, 1978.
- [2] M. Basarir and O. Solancan, On some double sequence spaces, J. Indian Acad. Math., **21(2)** (1999), 193-200.
- [3] C. Bektas and Y. Altin, The sequence space $\ell_M(p,q,s)$ on seminormed spaces, Indian J. Pure Appl. Math., **34(4)** (2003), 529-534.
- [4] T.J.I'A. Bromwich, An introduction to the theory of infinite series, Macmillan and Co.Ltd., New York, (1965).
- [5] J.C. Burkill and H. Burkill, A Second Course in Mathematical Analysis Cambridge University Press, Cambridge, New York, (1980).
- [6] R. Colak and A. Turkmenoglu, The double sequence spaces $\ell_{\infty}^2(p), c_0^2(p)$ and $c^2(p)$, (to appear).

- [7] M. Gupta and P.K. Kamthan, Infinite matrices and tensorial transformations, *Acta Math.*, Vietnam 5 (1980), 33-42.
- [8] G.H. Hardy, On the convergence of certain multiple series, *Proc. Camb. Phil. Soc.*, **19** (1917), 86-95.
- [9] M.A. Krasnoselskii and Y.B. Rutickii, Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
- [10] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, *Israel J. Math.*, **10** (1971), 379-390.
- [11] I. J. Maddox, Sequence spaces defined by a modulus, *Math. Proc. Cambridge Philos. Soc*, **100(1)** (1986), 161-166.
- [12] F. Moricz, Extentions of the spaces c and c_0 from single to double sequences, Acta. Math. Hungerica, 57(1-2), (1991), 129-136.
- [13] F. Moricz and B.E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Camb. Phil. Soc.*, **104**, (1988), 283-294.
- [14] M. Mursaleen, M.A. Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, *Demonstratio Math.*, Vol. XXXII (1999), 145-150.
- [15] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
- [16] W. Orlicz, Über Raume (L^M) Bull. Int. Acad. Polon. Sci. A, (1936), 93-107.
- [17] S.D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions, *Indian J. Pure Appl. Math.*, **25(4)**(1994), 419-428.
- [18] K. Chandrasekhara Rao and N. Subramanian, The Orlicz space of entire sequences, *Int. J. Math. Math. Sci.*, **68**(2004), 3755-3764.
- [19] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
- [20] B.C. Tripathy, On statistically convergent double sequences, *Tamkang J. Math.*, **34(3)**, (2003), 231-237.
- [21] B.C. Tripathy, M. Et and Y. Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Analysis and Applications, 1(3)(2003), 175-192.

- [22] A. Turkmenoglu, Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. (Math. Seri.), 12(1), (1999), 23-31.
- [23] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, North-Holland Publishing, Amsterdam, Vol.85(1984).
- [24] P.K. Kamthan and M. Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York, 1981.
- [25] M. Gupta and P.K. Kamthan, Infinite Matrices and tensorial transformations, *Acta Math. Vietnam* 5, (1980), 33-42.
- [26] N. Subramanian, R. Nallswamy and N.Saivaraju, Characterization of entire sequences via double Orlicz space, *Internaional Journal of Mathematics and Mathematical Sciences*, Vol.2007(2007), Article ID 59681, 10 pages.
- [27] A. Gökhan and R. Colak, The double sequence spaces $c_2^P(p)$ and $c_2^{PB}(p)$, Appl. Math. Comput., **157(2)**, (2004), 491-501.
- [28] A. Gökhan and R. Colak, Double sequence spaces ℓ_2^{∞} , *ibid.*, **160(1)**, (2005), 147-153.
- [29] M. Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
- [30] M. Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.
- [31] M. Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 523-531.
- [32] M. Mursaleen and O.H.H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 532-540.
- [33] B. Altay and F. Basar, Some new spaces of double sequences, *J. Math. Anal. Appl.*, **309(1)**, (2005), 70-90.
- [34] F. Basar and Y. Sever, The space \mathcal{L}_p of double sequences, *Math. J. Okayama Univ*, **51**, (2009), 149-157.
- [35] N. Subramanian and U.K. Misra, The semi normed space defined by a double gai sequence of modulus function, *Fasciculi Math.*, **46**, (2010).

- [36] H. Kizmaz, On certain sequence spaces, Cand. Math. Bull., 24(2), (1981), 169-176.
- [37] N. Subramanian and U.K. Misra, Characterization of gai sequences via double Orlicz space, Southeast Asian Bulletin of Mathematics, (revised).
- [38] N. Subramanian, B.C. Tripathy and C. Murugesan, The double sequence space of Γ^2 , Fasciculi Math., 40, (2008), 91-103.
- [39] N.Subramanian, B.C.Tripathy and C.Murugesan, The Cesáro of double entire sequences, *International Mathematical Forum*, 4 no.2(2009), 49-59.
- [40] N. Subramanian and U.K. Misra, The Generalized double of gai sequence spaces, *Fasciculi Math.*, **43**, (2010).
- [41] N. Subramanian and U.K. Misra, Tensorial transformations of double gai sequence spaces, *International Journal of Computational and Mathematical Sciences*, **3:4**, (2009), 186-188.
- [42] Erwin Kreyszig, Introductory Functional Analysis with Applications, *John Wiley and Sons Inc.*, 1978.
- [43] B. Kuttner, Note on strong summability, J. London Math. Soc., 21, (1946).
- [44] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser-2, 18, (1967), 345-355.
- [45] J. S. Cannor, On Stron matrix summability with respect to a modulus and statistical convergence, *Canad Math. Bull.*, **32(2)**, (1989), 194-198.
- [46] I. Leindler, Uber die la Vallee-Pousinche Summierbarkeit Allgemeiner Orthogonalreihen, Acta Math. Hung., 16(1965), 375-378.
- [47] I.J.Maddox, Elements of Functional Analysis, 2nd Edition, Cambridge University Press, 1970.

N.Subramanian Department of Mathematics,

SASTRA University,

Thanjavur-613 401, India. email:nsmaths@yahoo.com