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ON A GENERALIZED DOUBLE DIFFERENCE SEQUENCE
SPACES DEFINED BY A χ− SEQUENCE OF MODULUS

FUNCTIONS

N. Subramanian

Abstract. The idea of single difference sequence spaces was introduced by
Kizmaz and this concept was generalized by various authors. In this paper, we
define the sequence spaces χ2 (∆γ

u,Mmn, p, s) and Λ2 (∆γ
u,Mmn, p, s) , where M =

(Mmn) is a sequence of modulus functions, and examine some inclusion relations
and properties of these spaces.
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1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar val-
ued single sequences, respectively.
We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set of
positive integers. Then, w2 is a linear space under the coordinate wise addition and
scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich[4]. Later on,
they were investigated by Hardy[8], Moricz[12], Moricz and Rhoades[13], Basarir and
Solankan[2], Tripathy[20], Colak and Turkmenoglu[6], Turkmenoglu[22], and many
others.

Let us define the following sets of double sequences:

Mu (t) :=
{
(xmn) ∈ w2 : supm,n∈N |xmn|tmn < ∞

}
,

Cp (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn − l|tmn = 1for somel ∈ C

}
,

C0p (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn|tmn = 1

}
,
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N. Subramanian - On a generalized double difference sequence spaces defined...

Lu (t) :=
{
(xmn) ∈ w2 :

∑∞
m=1

∑∞
n=1 |xmn|tmn < ∞

}
,

Cbp (t) := Cp (t)
⋂

Mu (t) and C0bp (t) = C0p (t)
⋂

Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and
p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1
for all m,n ∈ N;Mu (t) ,Cp (t) ,C0p (t) ,Lu (t) ,Cbp (t) and C0bp (t) reduce to the sets
Mu,Cp,C0p,Lu,Cbp and C0bp, respectively. Now, we may summarize the knowledge
given in some document related to the double sequence spaces. Gökhan and Colak
[27,28] have proved that Mu (t) and Cp (t) ,Cbp (t) are complete paranormed spaces
of double sequences and gave the α−, β−, γ− duals of the spaces Mu (t) and Cbp (t) .
Quite recently, in her PhD thesis, Zelter [29] has essentially studied both the the-
ory of topological double sequence spaces and the theory of summability of double
sequences. Mursaleen and Edely [30] have recently introduced the statistical con-
vergence and Cauchy for double sequences and given the relation between statistical
convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [31]
and Mursaleen and Edely [32] have defined the almost strong regularity of matrices
for double sequences and applied these matrices to establish a core theorem and in-
troduced the M−core for double sequences and determined those four dimensional
matrices transforming every bounded double sequences x = (xjk) into one whose core
is a subset of the M−core of x. More recently, Altay and Basar [33] have defined the
spaces BS,BS (t) ,CSp,CSbp,CSr and BV of double sequences consisting of all double
series whose sequence of partial sums are in the spaces Mu,Mu (t) ,Cp,Cbp,Cr and
Lu, respectively, and also examined some properties of those sequence spaces and
determined the α− duals of the spaces BS,BV,CSbp and the β (ϑ)− duals of the
spaces CSbp and CSr of double series. Quite recently Basar and Sever [34] have in-
troduced the Banach space Lq of double sequences corresponding to the well-known
space `q of single sequences and examined some properties of the space Lq. Quite
recently Subramanian and Misra [35] have studied the space χ2

M (p, q, u) of double
sequences and gave some inclusion relations.
We need the following inequality in the sequel of the paper. For a, b,≥ 0 and
0 < p < 1, we have

(a + b)p ≤ ap + bp (1)

The double series
∑∞

m,n=1 xmn is called convergent if and only if the double sequence
(smn) is convergent, where smn =

∑m,n
i,j=1 xij(m,n ∈ N) (see[1]).

A sequence x = (xmn)is said to be double analytic if supmn |xmn|1/m+n < ∞. The
vector space of all double analytic sequences will be denoted by Λ2.A sequence
x = (xmn) is called double entire sequence if |xmn|1/m+n → 0 as m,n → ∞. The
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double entire sequences will be denoted by Γ2. A sequence x = (xmn) is called
double gai sequence if ((m + n)! |xmn|)1/m+n → 0 as m,n → ∞. The double gai
sequences will be denoted by χ2. Let φ = {all finite sequences} .

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence
is defined by x[m,n] =

∑ m,n
i,j=0xij=ij for all m,n ∈ N ; where =ij denotes the dou-

ble sequence whose only non zero term is a 1
(i+j)! in the (i, j)th place for each i, j ∈ N.

An FK-space (or a metric space) X is said to have AK property if (=mn) is
a Schauder basis for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metriz-
able; locally convex topology under which the coordinate mappings x = (xk) →
(xmn) (m,n ∈ N) are also continuous.

Orlicz[16] used the idea of Orlicz function to construct the space
(
LM

)
. Lin-

denstrauss and Tzafriri [10] investigated Orlicz sequence spaces in more detail, and
they proved that every Orlicz sequence space `M contains a subspace isomorphic to
`p (1 ≤ p < ∞) . subsequently, different classes of sequence spaces were defined by
Parashar and Choudhary [17], Mursaleen et al. [14], Bektas and Altin [3], Tripathy
et al. [21], Rao and Subramanian [18], and many others. The Orlicz sequence spaces
are the special cases of Orlicz spaces studied in [9].

Recalling [16] and [9], an Orlicz function is a function M : [0,∞) → [0,∞)
which is continuous, non-decreasing, and convex with M (0) = 0, M (x) > 0, for
x > 0 and M (x) → ∞ as x → ∞. If convexity of Orlicz function M is replaced by
subadditivity of M, then this function is called modulus function, defined by Nakano
[15] and further discussed by Ruckle [19] and Maddox [11], and many others.

An Orlicz function M is said to satisfy the ∆2− condition for all values of u
if there exists a constant K > 0 such that M (2u) ≤ KM (u) (u ≥ 0) . The ∆2−
condition is equivalent to M (`u) ≤ K`M (u) , for all values of u and for ` > 1.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to construct
Orlicz sequence space

`M =
{

x ∈ w :
∑∞

k=1 M
(
|xk|
ρ

)
< ∞, for someρ > 0

}
,

The space `M with the norm

‖x‖ = inf
{

ρ > 0 :
∑∞

k=1 M
(
|xk|
ρ

)
≤ 1

}
,
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becomes a Banach space which is called an Orlicz sequence space. For M (t) =
tp (1 ≤ p < ∞) , the spaces `M coincide with the classical sequence space `p.
If X is a sequence space, we give the following definitions:

(i) X
′
= the continuous dual of X;

(ii) Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| < ∞, for each x ∈ X

}
;

(iii) Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convegent, for each x ∈ X

}
;

(iv) Xγ =
{

a = (amn) : supmn ≥ 1
∣∣∣∑M,N

m,n=1 amnxmn

∣∣∣ < ∞, for each x ∈ X
}

;

(v) letX beanFK − space ⊃ φ; thenXf =
{

f(=mn) : f ∈ X
′
}

;

(vi) Xδ =
{

a = (amn) : supmn |amnxmn|1/m+n < ∞, for each x ∈ X
}

;

Xα.Xβ , Xγ are called α − (orKöthe − Toeplitz) dual of X, β − (or generalized −
Köthe−Toeplitz)dual ofX, γ− dual of X, δ − dual ofX respectively.Xα is defined
by Gupta and Kamptan [24]. It is clear that xα ⊂ Xβ and Xα ⊂ Xγ , but Xα ⊂ Xγ

does not hold, since the sequence of partial sums of a double convergent series need
not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced
by Kizmaz [36] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N. Here w, c, c0 and `∞
denote the classes of all, convergent,null and bounded scalar valued single sequences
respectively. The above spaces are Banach spaces normed by

‖x‖ = |x1|+ supk≥1 |∆xk|

Later on the notion was further investigated by many others. We now introduce the
following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2,Γ2 and χ2 respectively. ∆xmn = (xmn − xmn+1)−(xm+1n − xm+1n+1) =
xmn − xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N

Let r ∈ N be fixed, then

Z (∆r) = {(xmn) : (∆rxmn) ∈ Z} forZ = χ2,Γ2 andΛ2
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where ∆rxmn = ∆r−1xmn −∆r−1xm,n+1 −∆r−1xm+1,n + ∆r−1xm+1,n+1.

Now we introduced a generalized difference double operator as follows:

Let r, γ ∈ N be fixed, then

Z
(
∆r

γ

)
=

{
(xmn) :

(
∆r

γxmn

)
∈ Z

}
forZ = χ2,Γ2 andΛ2

where ∆r
γxmn = ∆r−1

γ xmn−∆r−1
γ xm,n+1−∆r−1

γ xm+1,n+∆r−1
γ xm+1,n+1 and ∆0

γxmn =
xmn for all m,n ∈ N.

The notion of a modulus function was introduced by Nakano [15]. We recall that a
modulus f is a function from [0,∞) → [0,∞) , such that
(1) f (x) = 0 if and only if x = 0
(2) f (x + y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0,
(3) f is increasing,
(4) f is continuous from the right at o. Since |f (x)− f (y)| ≤ f (|x− y|) , it follows
from condition (iv) that f is continuous on [0,∞) .

It is immediate from (ii) and (iv) that f is continuous on [0,∞) . Also from
codition (ii), we have f (nx) ≤ nf (x) for all n ∈ N and n−1f (x) ≤ f

(
xn−1

)
, for all

n ∈ N.
Remark: If f is a modulus function, then the composition fs = f ·f · · · f (s times)
is also a modulus function, where s is a positive integer.

Let p = (pmn) be a sequence of positive real numbers. We have the following
well known inequality, which will be used throughout this paper:

|amn + bmn|pmn ≤ D (|amn|pmn + |bmn|pmn) (2)

where amn and bmn are complex numbers, D = max
{
1, 2H−1

}
and H = supmnpmn <

∞.

2. Definitions and Notations:

A paranorm on a linear topological space X is a function g : X → R which satisfies
the following axioms: For any x, y, x0 ∈ X and λ, λ0 ∈ C, the set of complex num-
bers,

(i) g (θ) = 0, where θ =



0, 0, ...0
0, 0, ...0
.
.
.
0, 0, ...0

 , thezerosequence,
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(ii) g (x) = g (−x)
(iii) g (x + y) ≤ g (x) + g (y) (subadditivity) , and
(iv) the scalar multiplication is continuous, that is λ → λ0, x → x0 imply λx → λ0x0;
in other rowrds, |λ− λ0| → 0, g (x− x0) → 0.
A paranormed space is a linear space X with a paranorm g and is written (X, g) ,
(See [47],p.92).

Any function g which satisfies all the conditions (i)-(iv) together with the con-
dition.
(v) g (x) = 0 if and only if x = θ, is called a total paranorm on X, and the pair
(X, g) is called a total paranormed space, (See [47], p.92).

Let U be the set of all sequences u = (umn) such that umn 6= 0 (m,n = 1, 2, 3, · · · ) .

In this paper, we generalize the following sequence spaces:
Let M = (Mmn) be a sequence of modulus function and γ be a positive integer, and
using the notation ∆γ

uxmn for umn∆γ
xmn, we define

χ2 (∆γ
u,Mmn, s) ={

x ∈ w2 : limm,n→∞ (mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]
= 0, for some ρ > 0, s ≥ 0,

}
and
Λ2 (∆γ

u,Mmn, s) ={
x ∈ w2 : supmn (mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]
< ∞, for some ρ > 0, s ≥ 0,

}
where ∆γ

uxmn =
(
∆γ−1

u xmn −∆γ−1
u xmn+1 −∆γ1

u xm+1n + ∆γ1
u xm+1n+1

)
,∆0

uxmn =
(umnxmn) ,∆uxmn = (umnxmn − umn+1xmn+1 − um+1nxm+1n + um+1n+1xm+1n+1) .

3.Main Results

We prove the following theorems:
Theorem 3.1 Λ2 (∆γ

u,Mmn, s) is a Banach space with the metric

d (x, y) = inf

{
ρ > 0 : supmn (mn)−s Mmn

(
|∆γ

uxmn−∆γ
uymn|1/m+n

ρ

)
≤ 1

}
Proof: Let

(
xi

)
be any Cauchy sequence in Λ2 (∆γ

u,Mmn, s) where xi =
(
xi

mn

)
=

xi
11, xi

12, ...xi
1n

xi
21, xi

22, ...xi
2n

.

.

.
xi

21, xi
22, ...xi

2n

 ∈ Λ2 (∆γ
u,Mmn, s) , for each i ∈ N.

Let r, x0 > 0 be fixed. Then for each ε
rx0

> 0 there exists a positive integer L such
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that
(
xi − yi

)
−

(
xj

∆γ
u
− yj

∆γ
u

)
< ε

rx0
, for all i, j ≥ L. Using the definition of metric,

we have

supmn (mn)−s

Mmn

 |(∆γ
uxi

mn−∆γ
uyi

mn)−(∆γ
uxj

mn−∆γ
uyj

mn)|1/m+n

(xi−yi)−
(

xj

∆
γ
u
−yj

∆
γ
u

)
 ≤ 1, for allm, n ≥

0, andfor alli, j ≥ L.
Therefore one can find that there exists r > 0 with (mn)−s Mmn

(
rx0
2

)
≥ 1, such

that

(mn)−s

Mmn

 |(∆γ
uxi

mn−∆γ
uyi

mn)−(∆γ
uxj

mn−∆γ
uyj

mn)|1/m+n

(xi−yi)−
(

xj

∆
γ
u
−yj

∆
γ
u

)
 ≤ (mn)−s Mmn

(
rx0
2

)
.

This implies that
∣∣∣(∆γ

uxi
mn −∆γ

uyi
mn

)
−

(
∆γ

uxj
mn −∆γ

uyj
mn

)∣∣∣1/m+n
≤ rx0

2
ε

rx0
= ε

2 .

Since umn 6= 0 for all m,n, we get that∣∣∣(∆γ
uxi

mn −∆γ
uyi

mn

)
−

(
∆γ

uxj
mn −∆γ

uyj
mn

)∣∣∣1/m+n
≤ ε

2 , for all i, j ≥ L.

Hence
(
∆γ

uxi
mn −∆γ

uyi
mn

)
is a Cauchy sequence in R. Therefore for each ε (0 < ε < 1)

there exists a positive integer L such that∣∣∣(∆γ
uxi

mn −∆γ
uyi

mn

)
−

(
∆γ

uxj
mn −∆γ

uyj
mn

)∣∣∣1/m+n
≤ ε, for all i ≥ L. Now, using the

continuty of Mmn for each mn, we get that

supmn≥L (mn)−s

[
Mmn

(
|(∆γ

uxi
mn−∆γ

uyi
mn)−limj→∞(∆γ

uxj
mn−∆γ

uyj
mn)|1/m+n

ρ

)]
≤ 1. Thus

supmn≥L (mn)−s

[
Mmn

(
|(∆γ

uxi
mn−∆γ

uyi
mn)−(∆γ

uxmn−∆γ
uymn)|1/m+n

ρ

)]
≤ 1. Taking in-

fimum of such ρ′s we have

inf

{
ρ > 0 : supmn≥L (mn)−s

[
Mmn

(
|(∆γ

uxi
mn−∆γ

uyi
mn)−(∆γ

uxmn−∆γ
uymn)|1/m+n

ρ

)]
≤ 1

}
≤ ε, for all i ≥ L and j →∞. Since

(
xi

)
∈ Λ2 (∆γ

u,Mmn, s) , and Mmn is an modulus
function for each m,n and therefore continuous, we get that x ∈ Λ2 (∆γ

u,Mmn, s) .
This completes the proof.
Theorem 3.2 Let (Mmn) be a sequence of modulus function such that Mmn satis-
fies the ∆2− condition for each mn. Then (i) Λ2 (∆γ

u, s) ⊂ Λ2 (∆γ
u,Mmn, s),

(ii) χ2 (∆γ
u, s) ⊂ χ2 (∆γ

u,Mmn, s) .

Proof: (i) Let x ∈ Λ2 (∆γ
u, s) , the |∆γ

uxmn|1/m+n ≤ L, for allm, n. Therefore

(mn)−s

[
Mmn

(
|∆γ

uxmn|1/m+n

ρ

)]
≤ (mn)−s

[
Mmn

(
L
ρ

)]
≤ (mn)−s KHMmn (L) , for

each mn,by the ∆2− condition. Hence supmn (mn)−s

[
Mmn

(
|∆γ

uxmn|1/m+n

ρ

)]
< ∞.

That is Λ2 (∆γ
u, s) ⊂ Λ2 (∆γ

u,Mmn, s) .

(ii) Let x ∈ χ2 (∆γ
u, s) , then ((m + n)! |∆γ

uxmn|)1/m+n → 0asm, n →∞. Therefore
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(mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]
≤ (mn)−s KhMmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)
,

for each m, n by the ∆2− condition. Hence

(mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]
→ 0 as m, n → ∞. That is χ2 (∆γ

u, s) ⊂

χ2 (∆γ
u,Mmn, s) . This completes the proof.

Theorem 3.3 Let (Mmn) be a sequence of modulus functions. Then
(i)Λ2

(
∆0

u,Mmn, s
)
⊂ Λ2 (∆γ

u,Mmn, s) , (ii) χ2
(
∆0

u,Mmn, s
)
⊂ χ2 (∆γ

u,Mmn, s) .
Proof: It is trivial, so we omit it.

4. Paranormed Double Sequence Spaces

Let p = (pmn) be a sequence of positive real numbers, M = (Mmn) be a sequence of
modulus function and γ be a positive integer. We define
χ2 (∆γ

u,Mmn, p, s) ={
x ∈ w2 : lim

m,n→∞
(mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]pmn

= 0, for some ρ > 0, s ≥ 0,

}
and
Λ2 (∆γ

u,Mmn, p, s) ={
x ∈ w2 : sup

mn
(mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]pmn

< ∞, for some ρ > 0, s ≥ 0,

}
where ∆γ

uxmn =
(
∆γ−1

u xmn −∆γ−1
u xmn+1 −∆γ1

u xm+1n + ∆γ1
u xm+1n+1

)
,∆0

uxmn =
(umnxmn) ,∆uxmn = (umnxmn − umn+1xmn+1 − um+1nxm+1n + um+1n+1xm+1n+1) .
If (Mmn) = M for all m,n, s = 0 and γ = 1, then these spaces reduce to
χ2 (∆γ

u,Mmn, p) ={
x ∈ w2 : limm,n→∞

[
Mmn

(
((m+n)!|∆uxmn|)1/m+n

ρ

)]pmn

= 0, for someρ > 0
}

Λ2 (∆γ
u,Mmn, p) ={

x ∈ w2 : supmn

[
Mmn

(
((m+n)!|∆uxmn|)1/m+n

ρ

)]pmn

< ∞, for someρ > 0
}

These spaces are paranormed spaces with

Gγ
u (x) = inf

{
ρpm/H > 0 : supmn≥1 (mn)−s

[
Mmn

(
|∆γ

uxmn|1/m+n

ρ

)]pmn/H

≤ 1

}
, where

H = max (1, suppmn)
Now, we prove the following theorems
Theorem 4.1 Λ2 (∆γ

u,Mmn, p, s) is a paranormed space with

Gγ
u (x) = inf

{
ρpm/H > 0 : supmn≥1 (mn)−s

[
Mmn

(
|∆γ

uxmn|1/m+n

ρ

)]pmn/H

≤ 1

}
if

and only if h = infpmn > 0, where H = max (1, suppmn)
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(ii)Λ2 (∆γ
u,Mmn, p, s) is a complete paranormed linear metric space if the condition

(i) is satisfied.
Proof: (i) Sufficiency: Let h > 0. It is trivial that g (θ) = 0 and Gγ

u (−x) =
Gγ

u (x) . The inequality Gγ
u (x + y) ≤ Gγ

u (x) + Gγ
u (y) follows from the inequality

(2), since pmn/H ≤ 1 for all positive integers m,n. We also may write Gγ
u (λx) ≤

max
(
|λ| , |λ|h/H

)
Gγ

u (x) , since |λ|pmn ≤ max
(
|λ|h , |λ|H

)
for all positive integers

m,n and for any λ ∈ C, the set of complex numbers. Using this inequality, it can
be proved that λx → θ, when x is fixed and λ → 0, or λ → 0 and x → θ, or λ is
fixed and x → θ.
Necessity: Let Λ2 (∆γ

u,Mmn, p, s) be a paranormed space with the paranormed

Gγ
u (x) = inf

{
ρpm/H > 0 : supmn≥1 (mn)−s

[
Mmn

(
|∆γ

uxmn|1/m+n

ρ

)]pmn/H

≤ 1

}
, and

suppose that h = 0. Since |λ|pm/H ≤ |λ|h/H = 1 for all positive integers m, n and
λ ∈ C such that 0 < |λ| ≤ 1, we have

inf
{

supmn≥1 (mn)−s
[
Mmn

(
|λ|pmn/H

ρ

)]
≤ 1

}
= 1. Hence it follows that

Gγ
u (λx) = inf

{
supmn≥1 (mn)−s

[
Mmn

(
|λ|pmn/H

ρ

)]
≤ 1

}
= 1

for x = (α) ∈ Λ2 (∆γ
u,Mmn, p, s) is a paranormed space with Gγ

u (x) .
(ii) The proof is clear.
Theorem 4.2 Let 0 < pmn ≤ qmn < ∞ for each mn. Then χ2 (∆γ

u,Mmn, p, s) ⊆
χ2 (∆γ

u,Mmn, q, s)
Proof: Let x ∈ χ2 (∆γ

u,Mmn, p, s) . Then there exists some ρ > 0 such that

limm,n→∞ (mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]pmn

= 0 This implies that

(mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]pmn

≤ 1 for sufficiently large m,n, since Mmn

is non-decreasing for each m,n. Hence

limm,n→∞ (mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]qmn

≤

limm,n→∞ (mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]pmn

= 0 that is, x ∈ χ2 (∆γ
u,Mmn, q, s) .

This completes the proof.
Theorem 4.3 (i) 1 ≤ infpmn ≤ pmn ≤ 1. Then χ2 (∆γ

u,Mmn, p, s) ⊆ χ2 (∆γ
u,Mmn, s)

(ii) Let 1 ≤ pmn ≤ suppmn < ∞. Then χ2 (∆γ
u,Mmn, s) ⊆ χ2 (∆γ

u,Mmn, p, s) .
Proof: (i) Let x ∈ χ2 (∆γ

u,Mmn, p, s) .

limm,n→∞ (mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]pmn

= 0.

Since 0 < infpmn ≤ pmn ≤ 1, we have
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limm,n→∞ (mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]
≤

limm,n→∞ (mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]pmn

= 0, that is χ2 (∆γ
u,Mmn, s) .

(ii) Let 1 ≤ pmn for each m,n, and suppmn < ∞. Let x ∈ χ2 (∆γ
u,Mmn, s) , then for

each ε (0 < ε < 1) , there exists a positive integer L such that

(mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]
≤ ε, for all m,n ≥ L.

Since 1 ≤ pmn ≤ suppmn < ∞, we have

limm,n→∞ (mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]pmn

≤

limm,n→∞ (mn)−s

[
Mmn

(
((m+n)!|∆γ

uxmn|)1/m+n

ρ

)]
≤ ε < 1.

Hence x ∈ x ∈ χ2 (∆γ
u,Mmn, p, s) . This completes the proof.

Theorem 4.3 Let (pmn) be double analytic and (Mmn) be a sequence of Orlicz func-
tions. Then (i) Λ2

(
∆0

u,Mmn, p, s
)
⊂ Λ2 (∆γ

u,Mmn, p, s) , (ii) χ2
(
∆0

u,Mmn, p, s
)
⊂

χ2 (∆γ
u,Mmn, p, s) .

Proof: Let suppmn = H. If amn and bmn are complex numbers, then we have
|amn + bmn|pmn ≤ D (|amn|pmn + |bmn|pmn) where amn and bmn are complex num-
bers, D = max

{
1, 2H−1

}
and H = supmnpmn < ∞. Since Mmn is non decreasing

and convex for each m,n, the results follows from the above inequality. This com-
pletes the proof.
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sequences, International Mathematical Forum, 4 no.2(2009), 49-59.

[40] N. Subramanian and U.K. Misra, The Generalized double of gai sequence
spaces, Fasciculi Math., 43, (2010).

[41] N. Subramanian and U.K. Misra, Tensorial transformations of double gai se-
quence spaces, International Journal of Computational and Mathematical Sci-
ences, 3:4, (2009), 186-188.

[42] Erwin Kreyszig, Introductory Functional Analysis with Applications, John
Wiley and Sons Inc. , 1978.

[43] B. Kuttner, Note on strong summability, J. London Math. Soc., 21, (1946).

[44] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford
Ser-2, 18, (1967), 345-355.

[45] J. S. Cannor, On Stron matrix summability with respect to a modulus and
statistical convergence, Canad Math. Bull., 32(2), (1989), 194-198.

[46] I. Leindler, Uber die la Vallee-Pousinche Summierbarkeit Allgemeiner Orthog-
onalreihen, Acta Math. Hung. , 16(1965), 375-378.

[47] I.J.Maddox, Elements of Functional Analysis, 2nd Edition, Cambridge Univer-
sity Press, 1970.

N.Subramanian
Department of Mathematics,
SASTRA University,
Thanjavur-613 401, India. email:nsmaths@yahoo.com

113


